

Simulation of moist convective boundary layers with eddy-diffusivity/mass-flux parameterization

Kay Sušelj, João Teixeira

Pasadena, California, USA

Motivation

Improving PBL parameterization in convective boundary layers:

 GCM climate response highly dependent on low level cloud extend

IPCC (2007): 'Cloud feedbacks remain the largest source of uncertainty'

Doubling $CO_2 \rightarrow less$ low clouds in GFDL $\rightarrow \approx 4$ K global warming

Low level cloudiness increases albedo

Doubling $CO_2 \rightarrow$ more low clouds in NCAR $\rightarrow \approx 2$ K global warming

Physical processes influencing low level cloud formation and breakup

Large scale dynamics (prescribed in 1D model)

Turbulence:

- Boundary layer
- Convection

Cloud physics (condensation)

Radiation

Approach for improving boundary layer parameterization

- 1. Developing and testing turbulent and cloud parameterization based on Eddy-Diffusivity/Mass-Flux (EDMF) approach in one-dimensional model:
 - stratocumulus topped boundary layer
 - cumulus convection
 - transition

1D model - model dynamics

Prognostic equations for large scale flow:

$$\frac{\partial \theta_L}{\partial t} = -w \frac{\partial \theta_L}{\partial z} - \frac{\partial \overline{w'\theta'_L}}{\partial z} + S_{\theta} \qquad \theta_L = \left(\theta - \frac{L_v}{c_p T} q_l\right)$$

$$\frac{\partial q_t}{\partial t} = -w \frac{\partial q_t}{\partial z} - \frac{\partial \overline{w'q'_t}}{\partial z} \qquad q_t = q_l + q_v$$

$$\frac{\partial u}{\partial t} = -w \frac{\partial u}{\partial z} + f(v - v_g) - \frac{\partial \overline{w'u'}}{\partial z}$$

$$\frac{\partial v}{\partial t} = -w \frac{\partial v}{\partial z} - f(u - u_g) - \frac{\partial \overline{w'v'}}{\partial z}$$

Numerical scheme: semi-implicit, upwind differencing

1D model - turbulent parameterization

Parameterization of turbulent fluxes

- Combined Eddy diffusivity/Mass flux approach for scalars (Siebesma and Teixeira, 2000)
- Eddy diffusivity for momentum

$$\overline{w'\varphi'} = -K_H \frac{\partial \varphi}{\partial z} + \sum_i M_i (\varphi_{ui} - \varphi) \quad \varphi = \theta_L, q_t$$

$$\overline{w'u_i'} = -K_M \frac{\partial u_i}{\partial z}$$

Eddy-diffusivity (local mixing)

Moist updrafts - cumulus clouds

Eddy-diffusivity scheme

$$K_{H,M} = C_{H,M} l \sqrt{e}$$

e – Turbulent kinetic energy (prognostic equation) C_M , C_H – constants

/- mixing length:

$$l = f(kz; \tau \sqrt{e}; \frac{\sqrt{e}}{\tau N^2})$$

1D model - updraft parameterization

$$\overline{w'\varphi'} = -K_H \frac{\partial \varphi}{\partial z} + \sum_i M_i \left(\varphi_{ui} - \varphi \right) \quad \varphi = \theta_L, q_t$$

Mass-flux scheme equations:

$$M_{i} = a_{ci}w_{i}$$

$$w_{i} = \frac{\partial w_{i}}{\partial z} - \epsilon \alpha w_{i}^{2} + \beta B_{i}$$

$$\frac{\partial \varphi_{ui}}{\partial z} = -\epsilon_i \left(\varphi_{ui} - \varphi \right)$$

 α, β - constants φ_u - φ (q_t or Θ_L) in updraft

 a_c - Ratio of updraft area (0.1)

 ϵ - Entrainment rate (diagnostic equation) α w⁻¹

B - Buoyancy of the updraft

Condensation in updraft:

- Start with a single dry updraft at surface, integration in vertical
- Estimation of cloud cover and liquid water at each vertical level (pdf cloud scheme of Cheinet and Teixeira 2003)
- Separation of dry and dry updraft if condensation occurs, each of the updrafts is integrated independently

1D model - other physical parameterizations

Cloud physics - pdf scheme (e.g. Cheinet and Teixeira, 2003)

Key for coupling between condensation and turbulence:

- Buoyancy flux
- Radiation (long-wave only)

2D pdf of Θ_L [K] and q_T [kg/kg] at cloud base for shallow cumulus (RICO) case – from LES

Radiation Scheme - long-wave for cloudy layers only

- maximum cloud overlap
- emissivity based on liquid water content

Results - Stratocumulus

Simulation of DYCOMS case, comparison with 16 LES results (Stevens et al., 2005) • Mean profiles between $3^{\rm rd}$ and $4^{\rm th}$ simulation hour

Results - Cumulus convection

Offline testing of the updraft routine - BOMEX case (Siebesma et al., 2003) - comparison with LES results

1D model, eddy-diffusivity only 1D model, eddy-diffusivity/mass-flux LES moist, updrafts

Conclusions and further plans

- Combination of eddy-diffusivity and mass-flux is a promising parameterization approach for convective boundary layers
- Stratocumulus and cumulus cases can be well simulated
- Simulation stratocumulus to cumulus transition
- Extension to precipitating convection
- Implementation and testing of parameterization in NASA GEOS5 model

Thank you for your attention